Organometallic Polymers. XI. Copolymerization of 2-Ferrocenylethyl Acrylate and Methacrylate with Styrene, Vinyl Acetate, Methyl Acrylate, and Methyl Methacrylate

Charles U. Pittman, Jr.,\*1 Robert L. Voges,2 and William B. Jones3

Department of Chemistry, University of Alabama, University, Alabama 35486. Received December 23, 1970

ABSTRACT: Two novel ferrocene containing monomers, 2-ferrocenylethyl acrylate (Ia) (FEA) and 2-ferrocenylethyl methacrylate (Ib) (FEMA), the preparations of which were presented in the preceding paper, have been copolymerized with styrene, vinyl acetate, methyl acrylate, and methyl methacrylate. The copolymerizations were carried out at 60-70° in degassed benzene solutions and were initiated by azobisisobutyronitrile (AIBN). Homogeneous copolymers were formed in each case. The relative reactivity ratios of each of these monomer pairs were determined, where  $M_1$  is the monomer containing the ferrocene nucleus. The reactivity ratios were: FEA-styrene  $r_1 = 0.41$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ,  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ;  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ;  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ;  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ;  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ;  $r_2 = 1.06$ ; FEA-vinyl acetate  $r_1 = 3.4$ ;  $r_2 = 1.06$ ;  $r_2 = 1.06$ ;  $r_3 = 1.06$ ;  $r_4 = 1.06$ ;  $r_4 = 1.06$ ;  $r_4 = 1.06$ ;  $r_5 =$ 0.07; FEA-methyl acrylate  $r_1 = 0.76$ ,  $r_2 = 0.69$ ; FEMA-styrene  $r_1 = 0.08$ ,  $r_2 = 0.58$ ; FEMA-vinyl acetate  $r_1 = 8.79$ ,  $r_2 = 0.69$ ; FEMA-styrene  $r_1 = 0.08$ ,  $r_2 = 0.58$ ; FEMA-vinyl acetate  $r_1 = 0.76$ ,  $r_2 = 0.69$ ; FEMA-styrene  $r_1 = 0.08$ ,  $r_2 = 0.58$ ; FEMA-vinyl acetate  $r_1 = 0.76$ ,  $r_2 = 0.69$ ; FEMA-styrene  $r_1 = 0.08$ ,  $r_2 = 0.58$ ; FEMA-vinyl acetate  $r_1 = 0.76$ ,  $r_2 = 0.69$ ; FEMA-styrene  $r_1 = 0.08$ ,  $r_2 = 0.58$ ; FEMA-vinyl acetate  $r_1 = 0.76$ ,  $r_2 = 0.69$ ; FEMA-styrene  $r_1 = 0.08$ ,  $r_2 = 0.58$ ; FEMA-vinyl acetate  $r_1 = 0.76$ ,  $r_2 = 0.69$ ; FEMA-styrene  $r_3 = 0.08$ ,  $r_4 = 0.58$ ; FEMA-vinyl acetate  $r_4 = 0.76$ ,  $r_5 = 0.69$ ; FEMA-vinyl acetate  $r_5 = 0.69$ ; FEMA-styrene  $r_5 = 0.69$ ; FEMA-vinyl acetate  $r_5 = 0.69$ ; FEMA-vinyl acetate  $r_5 = 0.69$ ; FEMA-styrene  $r_5 = 0.69$ ; FEMA-st 0.06; FEMA-methyl methacrylate  $r_1 = 0.20$ ,  $r_2 = 0.65$ . Both FEA and FEMA proved to be more reactive monomers in these copolymerizations than ferrocenylmethyl acrylate (IIa) and methacrylate had been.

In the preceding paper4 the preparation and homopoly-I merization of 2-ferrocenylethyl acrylate (Ia) (FEA) and 2-ferrocenylethyl methacrylate (Ib) (FEMA) were described. It was demonstrated that the AIBN-initiated solution homopolymerizations of Ia and b were faster than those of ferrocenylmethyl acrylate and methacrylate (IIa and b) (FMA

and FMMA), respectively. Since there are no obviously large electronic factors which account for this pronounced rate difference, a steric effect was invoked to explain these results. It was felt that the increased homopolymerization rates of FEA and FEMA suggested that these monomers would be more rapidly copolymerized with vinyl monomers than Ha and b. The AIBN-initiated copolymerization of IIa and b with styrene, methyl acrylate, methyl methacrylate, and vinyl acetate, including their relative reactivity ratios, were reported recently by Pittman, et al.6 Thus, these values were available to compare with the relative reactivity ratios determined in this work.

Reports of the addition polymerization of transition metal containing organic monomers are rare<sup>5,7</sup> and addition copoly-

- (1) To whom inquiries should be addressed.
- (2) The work presented here constitutes a portion of the Master's thesis of R. L. Voges, University of Alabama, 1970.
- (3) Undergraduate work-study research participant, 1969-1970.
  (4) C. U. Pittman, Jr., R. L. Voges, and W. B. Jones, Macromolecules, 4, 291 (1971).
- (5) (a) C. U. Pittman, Jr., J. C. Lai, and D. P. Vanderpool, ibid., 3, 105 (1970); (b) C. U. Pittman, Jr., J. C. Lai, D. P. Vanderpool, M. Good, and R. Prados, Preprints of Papers of the Division of Organic Coatings and Plastics, presented at the 160th National Meeting of the American Chemical Society, Chicago, Ill., Sept 1970, p 72; Macromol-
- ecules, 3, 746 (1970).
  (6) J. C. Lai, T. D. Rounsefell, and C. U. Pittman, Jr., ibid., 4, 155 (1971).
- (7) See, for example, F. S. Arimoto and A. C. Haven, Jr., J. Amer. Chem. Soc., 77, 6295 (1955); Y. H. Chen, M. F. Refojo, and H. G. Cassidy, J. Polym. Sci., 40, 433 (1959).

merizations of this class of monomers are even rarer. 6,8 Thus, there is a need to develop model organometallic monomers which may easily be copolymerized with vinyl monomers in order to begin to explore just what unusual properties transition metals may bring to the resulting plastic systems.

## **Experimental Section**

Copolymerizations. The details of the synthesis and purification of FEA and FEMA are given in the preceding paper and will not be repeated here. Styrene, vinyl acetate, methyl acrylate, and methyl methacrylate were washed with 5% aqueous sodium hydroxide, then with 10\% aqueous sodium chloride, dried over anhydrous calcium chloride, and distilled under reduced pressure shortly before use. Only center cuts from these distillations were used in the copolymerizations. Benzene was distilled from P<sub>2</sub>O<sub>5</sub>, and commercial AIBN was recrystallized three times from methanol (102–103  $^{\circ}$ with decomposition).

The monomers and AIBN were weighed on an analytical balance and dissolved in benzene. These solutions were delivered into Fischer-Porter aerosol compatability tubes from a buret. The tubes were equipped with a valve and the solutions were degassed at  $10^{-2}$ – $10^{-3}$  mm by three alternate freeze–thaw cycles. After degassing, the tubes were placed in a constant-temperature bath (±0.01°). After the polymerization period, the benzene-copolymer solution was added dropwise to rapidly stirring petroleum ether (bp 30-60°) to precipitate the copolymer. The copolymers were filtered and reprecipitated in this fashion two more times to ensure purification. The copolymers were then dried at 60° in a vacuum drying oven for 24 hr and weighed. The copolymer composition was then determined by analysis for per cent Fe.9 The copolymer structure was confirmed by infrared spectroscopy, and gel permeation chromatography verified that the copolymers were

The infrared spectra were taken in KBr using a Perkin-Elmer Model 237 spectrometer and exhibited key bands as follows: FEA-styrene copolymer 3100, 2940-2860, 1735, 1490, 1460, 1255, 1160, 1108, 1040, 1025, 1000, 815, 755, 695, and 475 cm<sup>-1</sup>; FEAmethyl acrylate copolymer 3100, 2960-2860, 1735, 1440, 1390, 1255, 1165, 1108, 1040, 1023, 1000, 815, and 478 cm<sup>-1</sup>; FEA-vinyl acetate copolymer 3100, 2960-2860, 1735, 1440, 1385, 1245, 1165, 1108,

<sup>(8) (</sup>a) M. G. Baldwin and K. E. Johnson, ibid., Part A-1, 5, 2901 (1967); (b) C. U. Pittman, Jr., Polym. Lett., 6, 19 (1968); (c) J. Polym. Sci., Part A-1, 9, 651 (1971).

<sup>(9)</sup> Improved Fe analyses were obtained using combustion under pure oxygen.

1040, 1023, 1000, 815, and 478 cm<sup>-1</sup>; FEMA-styrene copolymer 3100, 2960-2860, 1730, 1480, 1460, 1265, 1140, 1108, 1040, 1020, 1000, 812, 750, 695, 672, and 475 cm<sup>-1</sup>; FEMA-methyl methacrylate copolymer 3100, 2990-2860, 1735, 1470, 1390, 1255, 1160, 1108, 1045, 1025, 1000, 815, 745, and 475 cm<sup>-1</sup>; FEMA-vinyl acetate copolymer 3100, 2980-2820, 1730, 1460, 1385, 1245, 1160, 1108, 1040, 1023, 1000, 815, 685, and 478 cm<sup>-1</sup>.

Determination of Relative Reactivity Ratios. The relative reactivity ratios were determined by employing the integrated form of the copolymer equation (eq 1) first obtained by Mayo and Lewis. 10  $M_1^0$  and  $M_2^0$  are the initial molar concentrations of the

$$\log \frac{M_1}{M_2} = \frac{r_2}{1 - r_2} \log \frac{M_1 M_2^0}{M_1^0 M_2} = \frac{1 - r_1 r_2}{(1 - r_2)(1 - r_1)} \times \log \frac{(r_1 - 1) \frac{M_2}{M_1} - r_2 + 1}{(r_1 - 1) \frac{M_2^0}{M_0^0} - r_2 + 1}$$
(1)

two monomers and  $M_1$  and  $M_2$  are their molar concentrations when the polymerization is terminated.

By substituting  $p = (1 - r_1)/(1 - r_2)$ , eq 1 is transformed into

$$r_{2} = \frac{\log (M_{2}^{0}/M_{2}) - (1/p) \times}{\log [(1-p)(M_{1}/M_{2})/(1-p)(M_{1}^{0}/M_{2}^{0})]} + \log [(1-p)(M_{1}/M_{2})/(1-p)(M_{1}^{0}/M_{2}^{0})]} \log [(1-p)(M_{1}/M_{2})/(1-p)(M_{1}^{0}/M_{2}^{0})]$$

This equation is suitable for any per cent conversion. However, working with the equation in this form would be exceedingly tedious. Montgomery and Fry11 recently published a computer program to utilize this equation efficiently and furnished a copy to us. This program was converted to Fortran IV for use on the IBM 360 Model 50 computer. For each monomer pair that was studied, a series of copolymerizations at two different initial monomer concentration ratios ( $[M_1^0]/[M_2^0]$ ) were carried out to various degrees of conversion. For each initial  $[M_1^0]/[M_1^0]$  ratio, a plot of the copolymer composition (in weight per cent of M1) vs. per cent conversion was made. Thus, two such curves for each copolymerization were obtained. By selecting any two points (one from each plot) and feeding these data to the computer program, unique  $r_1$  and  $r_2$  values are obtained. A single point gives  $r_2$  as a function of P, and for any two points there is a unique value of P that gives identical values of  $r_2$ . Thus, the program accepts initial monomer concentrations and polymer composition-conversion data for two points and varies P to rapidly converge  $r_2$  for these data. These  $r_2$  and P values are then used to calculate  $r_1$ . Instead of using only one set of two points, a series of 12-16 sets of such data points (one from each of the two  $M_1^0/M_2^0$  ratio runs) was used in each determination of  $r_1$  and  $r_2$ . This gives a range of  $r_1$  and  $r_2$  values which are then systematically fed into a second computer program which reconstructs a composition-conversion curve for any given  $r_1$ ,  $r_2$  pair. The regenerated curve was then determined which best fits the experimental points. The values of  $r_1$  and  $r_2$  which resulted in the curve having this best fit were then assigned as the relative reactivity ratios for the copolymerization.

The reason for using points from composition vs. conversion curves of different  $M_1^0/M_2^0$  ratios deserves brief comment. From a single experimental composition-conversion curve, any two data points could be used to get  $r_1$  and  $r_2$ . However, this requires input data accurate to an order of  $\pm 0.01\,\%$  for suitably accurate values of  $r_1$  and  $r_2$ . Since our experimental data are not nearly that good, we choose to use one point from each of two such curves. This

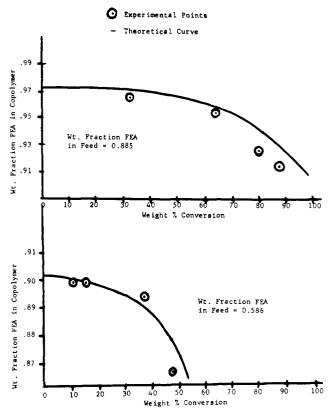



Figure 1. Composition-conversion curve for FEA-vinyl acetate copolymerization.




Figure 2. Composition-conversion curve for FEMA-vinyl acetate copolymerization.

permits a much lower experimental accuracy necessary to obtain acceptable  $r_1$ ,  $r_2$  values.

Table I gives a series of  $r_1$ ,  $r_2$  values obtained from various combinations of experimental points in the FEA-styrene copolymer-

<sup>(10)</sup> F. R. Mayo and F. M. Lewis, J. Amer. Chem. Soc., 66, 1594

<sup>(11)</sup> D. R. Montgomery and C. E. Fry, J. Polym. Sci., Part C, No. 25, 59 (1968).




Figure 3. Composition-conversion curve for FEMA-methyl methacrylate copolymerization.

## Results

The solution copolymerizations of FEA and FEMA with vinyl monomers proceeded smoothly at temperatures between 60 and 70°. The copolymers were demonstrated to be homogeneous by gel permeation chromatography. Only single-peak chromatograms were obtained. Thus, true copolymerization occurred. These copolymerizations are represented in Scheme I. Summaries of all copolymeriza-

|                                               | SCHEME I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FEA or FEMA R=H,CH <sub>3</sub>               | $ \begin{array}{c c}  & R \\  & CH_2 & CH_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CH <sub>2</sub> —CHOCCH <sub>3</sub>          | $\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline & & \\ \hline$ |  |
| $CH_{2} = C - C < O$ $CH_{3}$ $AIBN$ $\Delta$ | $\begin{array}{c c} & & & & R & & R \\ \hline & & & & & CH_2 & & CH_2 & & C \\ \hline & & & & & & CH_2 & & C \\ \hline & & & & & & & CH_2 & & C \\ \hline & & & & & & & CH_3 & & CH_3 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

TABLE I

DETERMINATION OF RELATIVE REACTIVITY RATIOS
FOR FEA-STYRENE COPOLYMERIZATION

| Combination no. | $r_1$ | $r_2$ |
|-----------------|-------|-------|
| 1-7             | 0.412 | 1.124 |
| 1-5             | 0.334 | 1.079 |
| 1-4             | 0.378 | 1.104 |
| 1-3             | 0.272 | 1.042 |
| 8-7             | 0.404 | 1.082 |
| 8-5             | 0.326 | 1.034 |
| 8-4             | 0.367 | 1.059 |
| 8-3             | 0.374 | 1.063 |
| 6-7             | 0.547 | 1.030 |
| 6-5             | 0.534 | 1.022 |
| 6-4             | 0.540 | 1 026 |

| Run no. | FEA in feed, g | Styrene in feed, g | AIBN in feed, g | Benzene<br>in feed, ml | Reaction<br>time, hr | Yield, g | % Fe in copolym | Conversion, | Wt fraction in co-<br>polymer FEA/styrene |
|---------|----------------|--------------------|-----------------|------------------------|----------------------|----------|-----------------|-------------|-------------------------------------------|
| 1       | 2.5000         | 2.1393             | 0.0096          | 10                     | 7.5                  | 1.0185   | 9.37            | 21.9        | 0.477/0.523                               |
| 2       | 2.5000         | 2.1393             | 0.0096          | 10                     | 20.0                 | 1.7166   | 8.35            | 37.0        | 0.425/0.575                               |
| 3       | 4.0000         | 0.6303             | 0.0066          | 10                     | 15.0                 | 2.0423   | 15.49           | 74.1        | 0.518/0.482                               |
| 4       | 4,0000         | 0.6303             | 0.0066          | 10                     | 1.5                  | 0.3797   | 15.36           | 49.4        | 0.493/0.507                               |
| 5       | 5.0000         | 0.6303             | 0.0066          | 10                     | 6.4                  | 1.3923   | 15.46           | 44.2        | 0.778/0.212                               |
| 6       | 2.5000         | 2.1393             | 0.0096          | 10                     | 69.5                 | 3.4411   | 10.18           | 8.2         | 0.781/0.219                               |
| 7       | 4.0000         | 0.6303             | 0.0066          | 10                     | 30.0                 | 2.5418   | 16.04           | 30.1        | 0.786/0.214                               |
| 8       | 2.5000         | 2.1393             | 0.0096          | 10                     | 35.1                 | 2.2952   | 9.69            | 55.0        | 0.816/0.184                               |

| Run no. | FEA in feed, g | Vinyl acetate<br>in feed, g | AIBN in feed, g | Benzene<br>in feed, ml | Reaction time, hr | Yield, g | % Fe  | Conversion,  | Wt fraction in co-<br>polymer FEA/vinyl<br>acetate |
|---------|----------------|-----------------------------|-----------------|------------------------|-------------------|----------|-------|--------------|----------------------------------------------------|
| 1       | 2.5000         | 1.7677                      | 0.0096          | 10                     | 8.3               | 2.0228   | 17.00 | 47.4         | 0.865/0.135                                        |
| 2       | 2.5000         | 1.7677                      | 0.0096          | 10                     | 4.0               | 1.6002   | 17.58 | 37.5         | 0.894/0.106                                        |
| 3       | 2.0000         | 0.2600                      | 0.0033          | 8                      | 11.5              | 0.7096   | 18.29 | 14.5         | 0.898/0.007                                        |
| 4       | 2.5000         | 1.7677                      | 0.0096          | 10                     | 1.75              | 0.6188   | 18.33 | 10.8         | 0.899/0.101                                        |
| 5       | 2.0000         | 0.2600                      | 0.0033          | 8                      | 48.0              | 1.9029   | 17.96 | 31.4         | 0.996/0.034                                        |
| 6       | 1.2500         | 0.8839                      | 0.0048          | 5                      | 1.2               | 0.2304   | 17.68 | 87.3         | 0.914/0.086                                        |
| 7       | 2.0000         | 0.2600                      | 0.0033          | 8                      | 30.0              | 1.4508   | 18.77 | 64.2         | 0.955/0.045                                        |
| 8       | 2.0000         | 0.2600                      | 0.0033          | 8                      | 41.5              | 1.7944   | 18.23 | <b>79</b> .4 | 0.927/0.073                                        |

Table IV Copolymerization of FEA with Methyl Acrylate at  $60^{\circ}$ 

| Run no. | FEA in feed, g | Methyl<br>acrylate<br>in feed, g | AIBN<br>in feed, g | Benzene<br>in feed,<br>ml | Reaction time, hr | Yield, g | % Fe  | Conversion, | Wt fraction in copoly-<br>mer FEA/methyl<br>acrylate |
|---------|----------------|----------------------------------|--------------------|---------------------------|-------------------|----------|-------|-------------|------------------------------------------------------|
| 1       | 2.5000         | 1.7677                           | 0.0096             | 10                        | 4.0               | 1.2334   | 12.30 | 28.9        | 0.626/0.374                                          |
| 2       | 1.2500         | 0.8839                           | 0.0048             | 10                        | 18.0              | 1.7348   | 11.80 | 81.3        | 0.600/0.400                                          |
| 3       | 2.0000         | 0.2600                           | 0.0033             | 10                        | 24.0              | 1.2904   | 17.72 | 46.7        | 0.617/0.383                                          |
| 4       | 2.5000         | 1.7677                           | 0.0096             | 10                        | 8.0               | 1.9930   | 12.13 | 77.0        | 0.609/0.391                                          |
| 5       | 2.0000         | 0.2600                           | 0.0033             | 10                        | 30.1              | 1.6633   | 17.31 | 57.1        | 0.902/0.098                                          |
| 6       | 2.0000         | 0.2600                           | 0.0033             | 10                        | 9.5               | 0.4181   | 17.21 | 73.6        | 0.881/0.119                                          |
| 7       | 1.2500         | 0.8839                           | 0.0048             | 10                        | 16.2              | 1.6430   | 11.96 | 18.5        | 0.876/0.124                                          |
| 8       | 2.0000         | 0.2600                           | 0.0096             | 9                         | 22.0              | 1.9097   | 16.61 | 84.5        | 0.845/0.155                                          |

 $\begin{tabular}{ll} Table~V\\ Copolymerization~of~FEMA~with~Styrene~at~70^\circ \end{tabular}$ 

| Run no. | FEMA in feed, g | Styrene in feed, g | AIBN in feed, g | Benzene<br>in feed,<br>ml | Reaction time, hr | Yield, g | % Fe  | Conversion, % | Wt fraction in co-<br>polymer FEMA/<br>styrene |
|---------|-----------------|--------------------|-----------------|---------------------------|-------------------|----------|-------|---------------|------------------------------------------------|
| 1       | 2.5000          | 2.0421             | 0.0092          | 25                        | 8.25              | 0.2607   | 10.43 | 5.74          | 0.557/0.443                                    |
| 2       | 2.5000          | 2.0421             | 0.0092          | 10                        | 10.0              | 1.5974   | 10.40 | 35.2          | 0.555/0.445                                    |
| 3       | 2.5000          | 2.0421             | 0.0092          | 10                        | 27.0              | 2.6934   | 10.18 | 59.3          | 0.547/0.453                                    |
| 4       | 2.5000          | 2.0421             | 0.0092          | 10                        | 52.0              | 3.1384   | 10.28 | 69.1          | 0.544/0.456                                    |
| 5       | 4.0000          | 0.5980             | 0.0062          | 13                        | 7.5               | 1.5428   | 14.23 | 31.6          | 0.757/0.243                                    |
| 6       | 4.0000          | 0.5980             | 0.0062          | 13                        | 11.25             | 1.8162   | 14.18 | 39.5          | 0.760/0.240                                    |
| 7       | 4.0000          | 0.5980             | 0.0062          | 13                        | 16.0              | 2.2714   | 14.29 | 49.4          | 0.763/0.237                                    |
| 8       | 4.0000          | 0.5980             | 0.0062          | 13                        | 22.0              | 2.6714   | 14.65 | 58.1          | 0.782/0.218                                    |

 $\label{eq:table VI} \text{Copolymerization of FEMA with Vinyl Acetate at } 60^\circ$ 

| Run no. | FEMA in feed, g | Vinyl<br>acetate<br>in feed, g | AIBN in feed, g | Benzene<br>in feed,<br>ml | Reaction time, hr | Yield, g | % Fe  | Conversion, % | Wt fraction in copolymer FEMA/ vinyl acetate |
|---------|-----------------|--------------------------------|-----------------|---------------------------|-------------------|----------|-------|---------------|----------------------------------------------|
| 1       | 2.5000          | 1.6851                         | 0.0092          | 10                        | 16.5              | 2.8969   | 15.05 | 6.2           | 0.808/0.192                                  |
| 2       | 1.5000          | 3.8745                         | 0.0064          | 10                        | 1.75              | 0.3348   | 12.95 | 58.6          | 0.630/0.370                                  |
| 3       | 1.5000          | 3.8745                         | 0.0064          | 10                        | 20.5              | 3.1499   | 13.88 | 17.1          | 0.780/0.220                                  |
| 4       | 1.5000          | 3.8745                         | 0.0064          | 10                        | 5.2               | 0.9210   | 14.61 | 30.2          | 0.733/0.267                                  |
| 5       | 2.5000          | 1.6851                         | 0.0092          | 10                        | 19.0              | 3,1584   | 14.62 | 69.2          | 0.803/0.197                                  |
| 6       | 1.2500          | 0.8426                         | 0.0043          | 8                         | 1.5               | 0.1722   | 17.47 | 75.5          | 0.781/0.219                                  |
| 7       | 1.2500          | 0.8426                         | 0.0043          | 8                         | 7.5               | 0.8721   | 17.02 | 8.2           | 0.933/0.067                                  |
| 8       | 1.5000          | 3.8745                         | 0.0064          | 8                         | 9.5               | 1.6209   | 13.72 | 41.7          | 0.909/0.091                                  |

| Run no. | FEMA in feed, g | Methyl<br>methacrylate<br>in feed, g | AIBN in feed, g | Benzene<br>in feed,<br>ml | Reaction time, hr | Yield, g | % Fe  | Conversion, % | Wt fraction in copolymer FEMA/ methyl methacrylate |
|---------|-----------------|--------------------------------------|-----------------|---------------------------|-------------------|----------|-------|---------------|----------------------------------------------------|
| 1       | 2.5000          | 1.9591                               | 0.0092          | 10                        | 3.5               | 0.9150   | 10.84 | 20.5          | 0.579/0.421                                        |
| 2       | 2.5000          | 1.9591                               | 0.0092          | 10                        | 10.0              | 3.2181   | 10.21 | 72.2          | 0.545/0.455                                        |
| 3       | 2.5000          | 1.9591                               | 0.0092          | 10                        | 11.1              | 4.0199   | 10.52 | 90.2          | 0.562/0.438                                        |
| 4       | 2.5000          | 1.9591                               | 0.0092          | 10                        | 7.75              | 2.1190   | 10.54 | 47.5          | 0.563/0.437                                        |
| 5       | 4.0000          | 0.5754                               | 0.0062          | 10                        | 5.25              | 3,3464   | 15.59 | 73.1          | 0.832/0.168                                        |
| 6       | 4.0000          | 0.5754                               | 0.0062          | 10                        | 7.5               | 3.0242   | 15.32 | 66.1          | 0.818/0.182                                        |
| 7       | 2.0000          | 0.2877                               | 0.0031          | 10                        | 3.75              | 0.3456   | 14.76 | 15.1          | 0.788/0.212                                        |
| 8       | 2.0000          | 0.2877                               | 0.0031          | 10                        | 5.25              | 0.7506   | 14.91 | 32.8          | 0.796/0.204                                        |

TABLE VIII
SUMMARY OF REACTIVITY RATIOS FOR FEA AND FEMA, AND COMPARISON WITH THOSE OF FMA AND FMMA<sup>a</sup>

| M <sub>1</sub> | $M_2$               | $r_1$             | $r_2$             | M <sub>1</sub> | $M_2$               | $r_1$             | $r_2$            |
|----------------|---------------------|-------------------|-------------------|----------------|---------------------|-------------------|------------------|
| FEA            | Styrene             | $0.408 \pm 0.138$ | $1.060 \pm 0.051$ | FMA            | Styrene             | $0.02 \pm 0.01$   | $2.3 \pm 0.3$    |
| FEA            | Methyl acrylate     | $0.760 \pm 0.027$ | $0.687 \pm 0.043$ | FMA            | Methyl acrylate     | $0.14 \pm 0.02$   | $4.46 \pm 0.2$   |
| FEA            | Vinyl acetate       | $3.430 \pm 0.313$ | $0.074 \pm 0.094$ | FMA            | Vinyl acetate       | $1.44 \pm 0.38$   | $0.460 \pm 0.08$ |
| <b>FEMA</b>    | Styrene             | $0.084 \pm 0.018$ | $0.582 \pm 0.010$ | FMMA           | Styrene             | $0.03 \pm 0.02$   | $3.7 \pm 0.2$    |
| <b>FEMA</b>    | Methyl methacrylate | $0.203 \pm 0.035$ | $0.646 \pm 0.014$ | <b>FMMA</b>    | Methyl methacrylate | $0.124 \pm 0.020$ | $3.27 \pm 0.06$  |
| <b>FEMA</b>    | Vinyl acetate       | $8.791 \pm 0.231$ | $0.058 \pm 0.003$ | <b>FMMA</b>    | Vinyl acetate       | $1.52 \pm 0.50$   | $0.20 \pm 0.10$  |

<sup>&</sup>lt;sup>a</sup> The  $r_1$ ,  $r_2$  values for FMA and FMMA were taken from ref 8c.

TABLE IX
REACTIVITY RATIOS OF METHYL ACRYLATE-STYRENE, METHYL ACRYLATE-VINYL ACETATE,
METHYL METHACRYLATE-STYRENE, AND METHYL METHACRYLATE-VINYL ACETATE

| $M_1$               | $M_2$                      | $r_1$             | $r_2$             |
|---------------------|----------------------------|-------------------|-------------------|
| Methyl acrylate     | Styrene <sup>a</sup>       | $0.18 \pm 0.02$   | $0.75 \pm 0.07$   |
| Methyl acrylate     | Vinyl acetate <sup>b</sup> | $9.00 \pm 2.50$   | $0.10 \pm 0.10$   |
| Methyl methacrylate | Styrene <sup>a</sup>       | $0.460 \pm 0.026$ | $0.520 \pm 0.026$ |
| Methyl methacrylate | Vinyl acetate              | $20.0 \pm 3.0$    | 0.015             |

<sup>a</sup> F. M. Lewis, C. Walling, W. Cummings, E. R. Briggs, and F. R. Mayo, J. Amer. Chem. Soc., 70, 1519 (1948). <sup>b</sup> F. R. Mayo, F. K. Lewis, and C. Walling, ibid., 70, 1529 (1948). <sup>c</sup> F. R. Mayo, C. Walling, F. M. Lewis, and W. F. Hulse, ibid., 70, 1523 (1948).

tions and the resulting copolymer compositions are given in Tables II–VII. The relative reactivity ratios are summarized in Table VIII and compared with those of FMA and FMMA. Table IX lists relative reactivity ratios for methyl acrylate and methyl methacrylate for comparison with the reactivity ratios of FEA and FEMA.

A close examination of the relative reactivity ratios summarized in Table VIII clearly demonstrates FEA and FEMA are more reactive monomers than FMA and FMMA. When copolymerized with a common comonomer, FEA always has the larger value of  $r_1$  and a smaller value of  $r_2$ . Thus, FEA·(FEMA·) adds more readily to FEA (FEMA), in comparison to its addition to  $M_2$ , than does FMA or FMMA. Also  $M_2$ · adds more readily to FEA (FEMA) relative to  $M_2$  than it does to FMA or FMMA. By including the extra methylene group between the ferrocene and acrylate functions the copolymerizability has been increased. In fact, FEA appears somewhat more reactive than methyl acrylate, while methyl methacrylate seems somewhat more reactive than FEMA (see Table IX). Clearly, FEA and FEMA are suitable acrylate monomers for a wide range of copolymerizations.

Figures 1-3 show the experimental composition-conversion data obtained in FEA-vinyl acetate, FEMA-vinyl acetate, and FEMA-methyl methacrylate copolymerizations. In addition, the theoretical composition-conversion curve for the values of  $r_1$  and  $r_2$  listed in Table VIII is included in these figures to illustrate the fit given by the "best"  $r_1$ ,  $r_2$  values with the experimental results. It is significant that the  $r_1$ ,  $r_2$  values chosen gave good fits of the composition-conversion data at both  $M_1^0/M_2^0$  ratios used.

An evaluation of the properties of copolymers of FEA, FEMA, FMA, and FMMA, as well as extended studies of the scope of their copolymerization behavior are in progress and will be reported later.

Acknowledgments. This work was supported by Petroleum Research Fund Grant No. 4479 AC 1-3 and by a Research Corporation Equipment Grant. Further support was provided by a Paint Research Institute Fellowship. The College work-study program provided support for W. Jones. We gratefully acknowledge these sources of support.

## Organometallic Polymers. XIII. Addition Polymerization and Copolymerization of $\pi$ -(Benzyl acrylate)chromium Tricarbonyl

Charles U. Pittman, Jr.,\*1 Robert L. Voges,2 and James Elder3

Department of Chemistry, University of Alabama, University, Alabama 35486. Received December 30, 1970

ABSTRACT: A novel metal carbonyl containing monomer,  $\pi$ -(benzyl acrylate)chromium tricarbonyl (BAC), has been synthesized and both homopolymerized and copolymerized using azobisisobutyrontrile (AIBN) initiation in solution. The reaction of chromium hexacarbonyl with benzyl alcohol gave  $\pi$ -(benzyl alcohol)chromium tricarbonyl which was esterified using acrylyl chloride in ether-pyridine. BAC is the first well-defined monomer of the chromium carbonyls which has been polymerized. Soluble homopolymers having  $\overline{M}_n$  as high as 60,000 were prepared and the values of K and a in the Mark-Houwink equation,  $[\eta] = KM^a$ , were  $K = 3.95 \times 10^{-3}$ , a = 0.82 when  $M = \overline{M}_n$ . The relative reactivity ratios of BAC (M<sub>1</sub>) copolymerizations with styrene ( $r_1 = 0.10$ ,  $r_2 = 0.34$ ) and methyl acrylate ( $r_1 = 0.56$ ,  $r_2 = 0.63$ ) were obtained, and the copolymers were demonstrated to be homogeneous by gel permeation chromatography. From gel permeation chromatography studies a Q factor of 94 was assigned to BAC. Kinetic studies of BAC homopolymerization by dilatometry were not successful because bubble formation in the dilatometer occurred at low polymer conversions. BAC was copolymerized with 2-ferrocenylethyl acrylate to give a polyacrylate containing both chromium and iron.

The addition polymerization and copolymerization of transition metal containing monomers has not yet been extensively studied. Several recent reviews of organo-

(1) To whom inquiries should be addressed.

(3) Undergraduate work-study research participant.

metallic polymer chemistry attest to this.4 Furthermore,

(4) C. U. Pittman, Jr., J. Paint Technol., 39, 585 (1967); H. Valot, Double Liaison (France), 130, 775 (1966); E. W. Neuse in "Advances in Macromolecular Chemistry," W. M. Pasika, Ed., Academic Press, New York, N. Y., 1968; T. P. Vishnyakova, Usp. Khim. (USSR), 36, 2136 (1967); E. W. Neuse and H. Rosenberg, J. Macromol. Sci., Rev. Macromol. Chem., 4, 1, (1970); B. A. Bolto in "Organic Semiconducting Polymers," J. E. Eaton, Ed., Marcel Dekker, New York, N. Y., 1968.

<sup>(2)</sup> This work constitutes a portion of the Master's Thesis of R. L. Voges, University of Alabama, 1970.